Distributional Jacobian and singularities of Sobolev maps

نویسندگان

  • Giovanni Alberti
  • G. Alberti
چکیده

– We review the definition and main properties of the distributional Jacobians, in particular for Sobolev maps u : R → R with values in the (k − 1)dimensional sphere S.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak notions of Jacobian determinant and relaxation

In this paper we study two weak notions of Jacobian determinant for Sobolev maps, namely the distributional Jacobian and the relaxed total variation, which in general could be different. We show some cases of equality and use them to give an explicit expression for the relaxation of some polyconvex functionals.

متن کامل

Functions with prescribed singularities

The distributional k-dimensional Jacobian of a map u in the Sobolev space W 1,k−1 which takes values in the the sphere S can be viewed as the boundary of a rectifiable current of codimension k carried by (part of) the singularity of u which is topologically relevant. The main purpose of this paper is to investigate the range of the Jacobian operator; in particular, we show that any boundary M o...

متن کامل

Research Summary

1. Overview 2 2. Electromagnetic waves 3 2.1. Approximate cloaking via change of variables 3 2.1.1. Cloaking for the Helmholtz equation 3 2.1.2. Full range estimates for the degree of invisibility 4 2.1.3. Perfect cloaking for the Helmholtz equation 4 2.2. Electrical impedance tomography 5 2.3. Generalized impedance boundary conditions 5 2.3.1. The Helmholtz equation 6 2.3.1. The time harmonic ...

متن کامل

Prescribing the Jacobian in critical spaces

We consider the Sobolev space X = W s,p(Sm;Sk−1). We prove the existence of a robust distributional Jacobian Ju for u ∈ X provided sp ≥ k−1; this generalizes a result of Bourgain, Brezis and the second author [10], where the case m = k is considered. In the critical case where sp = k − 1, we identify the image of the map X 3 u 7→ Ju. This extends a result of Alberti, Baldo and Orlandi [2] for s...

متن کامل

Local invertibility in Sobolev spaces with applications to nematic elastomers and magnetoelasticity

We define a class of deformations in W (Ω,R), p > n−1, with positive Jacobian that do not exhibit cavitation. We characterize that class in terms of the non-negativity of the topological degree and the equality Det = det (that the distributional determinant coincides with the pointwise determinant of the gradient). Maps in this class are shown to satisfy a property of weak monotonicity, and, as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006